Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Open Forum Infect Dis ; 9(12): ofac641, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2190082

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has demonstrated the need to share data and biospecimens broadly to optimize clinical outcomes for US military Veterans. Methods: In response, the Veterans Health Administration established VA SHIELD (Science and Health Initiative to Combat Infectious and Emerging Life-threatening Diseases), a comprehensive biorepository of specimens and clinical data from affected Veterans to advance research and public health surveillance and to improve diagnostic and therapeutic capabilities. Results: VA SHIELD now comprises 12 sites collecting de-identified biospecimens from US Veterans affected by SARS-CoV-2. In addition, 2 biorepository sites, a data processing center, and a coordinating center have been established under the direction of the Veterans Affairs Office of Research and Development. Phase 1 of VA SHIELD comprises 34 157 samples. Of these, 83.8% had positive tests for SARS-CoV-2, with the remainder serving as contemporaneous controls. The samples include nasopharyngeal swabs (57.9%), plasma (27.9%), and sera (12.5%). The associated clinical and demographic information available permits the evaluation of biological data in the context of patient demographics, clinical experience and management, vaccinations, and comorbidities. Conclusions: VA SHIELD is representative of US national diversity with a significant potential to impact national healthcare. VA SHIELD will support future projects designed to better understand SARS-CoV-2 and other emergent healthcare crises. To the extent possible, VA SHIELD will facilitate the discovery of diagnostics and therapeutics intended to diminish COVID-19 morbidity and mortality and to reduce the impact of new emerging threats to the health of US Veterans and populations worldwide.

2.
JAMA Netw Open ; 5(9): e2229747, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2013240

ABSTRACT

Importance: Male sex is associated with severe COVID-19. It is not known whether the risk of hospitalization differs between men with hypogonadism, men with eugonadism, and those receiving testosterone therapy (TTh). Objective: To compare COVID-19 hospitalization rates for men with hypogonadism who were not receiving TTh, men with eugonadism, and men receiving TTh. Design, Setting, and Participants: This cohort study was conducted in 2 large academic health systems in St Louis, Missouri, among 723 men with a history of COVID-19 who had testosterone concentrations measured between January 1, 2017, and December 31, 2021. Exposures: The primary exposure was gonadal status (hypogonadism, eugonadism, and TTh). Hypogonadism was defined as a total testosterone concentration below the limit of normal provided by the laboratory (which varied from 175 to 300 ng/dL [to convert to nanomoles per liter, multiply by 0.0347]). Main Outcomes and Measures: The primary outcome was rate of hospitalization for COVID-19. Statistical adjustments were made for group differences in age, body mass index, race and ethnicity, immunosuppression, and comorbid conditions. Results: Of the 723 study participants (mean [SD] age, 55 [14] years; mean [SD] body mass index, 33.5 [7.3]), 116 men had hypogonadism, 427 had eugonadism, and 180 were receiving TTh. Men with hypogonadism were more likely than men with eugonadism to be hospitalized with COVID-19 (52 of 116 [45%] vs 53 of 427 [12%]; P < .001). After multivariable adjustment, men with hypogonadism had higher odds than men with eugonadism of being hospitalized (odds ratio, 2.4; 95% CI, 1.4-4.4; P < .003). Men receiving TTh had a similar risk of hospitalization as men with eugonadism (odds ratio, 1.3; 95% CI, 0.7-2.3; P = .35). Men receiving inadequate TTh (defined as subnormal testosterone concentrations while receiving TTh) had higher odds of hospitalization compared with men who had normal testosterone concentrations while receiving TTh (multivariable adjusted odds ratio, 3.5; 95% CI, 1.5-8.6; P = .003). Conclusions and Relevance: This study suggests that men with hypogonadism were more likely to be hospitalized after COVID-19 infection compared with those with eugonadism, independent of other known risk factors. This increased risk was not observed among men receiving adequate TTh. Screening and appropriate therapy for hypogonadism need to be evaluated as a strategy to prevent severe COVID-19 outcomes among men.


Subject(s)
COVID-19 , Hypogonadism , COVID-19/epidemiology , Cohort Studies , Hospitalization , Humans , Hypogonadism/chemically induced , Hypogonadism/complications , Hypogonadism/epidemiology , Male , Middle Aged , Testosterone/therapeutic use
3.
JAMA Netw Open ; 4(5): e2111398, 2021 05 03.
Article in English | MEDLINE | ID: covidwho-1241495

ABSTRACT

Importance: Male sex is a risk factor for developing severe COVID-19 illness. It is not known whether sex hormones contribute to this predisposition. Objective: To investigate the association of concentrations of serum testosterone, estradiol, and insulinlike growth factor 1 (IGF-1, concentrations of which are regulated by sex hormone signaling) with COVID-19 severity. Design, Setting, and Participants: This prospective cohort study was conducted using serum samples collected from consecutive patients who presented from March through May 2020 to the Barnes Jewish Hospital in St Louis, Missouri, with COVID-19 (diagnosed using nasopharyngeal swabs). Exposures: Testosterone, estradiol, and IGF-1 concentrations were measured at the time of presentation (ie, day 0) and at days 3, 7, 14, and 28 after admission (if the patient remained hospitalized). Main Outcomes and Measures: Baseline hormone concentrations were compared among patients who had severe COVID-19 vs those with milder COVID-19 illness. RNA sequencing was performed on circulating mononuclear cells to understand the mechanistic association of altered circulating hormone concentrations with cellular signaling pathways. Results: Among 152 patients (90 [59.2%] men; 62 [40.8%] women; mean [SD] age, 63 [16] years), 143 patients (94.1%) were hospitalized. Among 66 men with severe COVID-19, median [interquartile range] testosterone concentrations were lower at day 0 (53 [18 to 114] ng/dL vs 151 [95 to 217] ng/dL; P = .01) and day 3 (19 [6 to 68] ng/dL vs 111 [49 to 274] ng/dL; P = .006) compared with 24 men with milder disease. Testosterone concentrations were inversely associated with concentrations of interleukin 6 (ß = -0.43; 95% CI, -0.52 to -0.17; P < .001), C-reactive protein (ß = -0.38; 95% CI, -0.78 to -0.16; P = .004), interleukin 1 receptor antagonist (ß = -0.29; 95% CI, -0.64 to -0.06; P = .02), hepatocyte growth factor (ß = -0.46; 95% CI, -0.69 to -0.25; P < .001), and interferon γ-inducible protein 10 (ß = -0.32; 95% CI, -0.62 to -0.10; P = .007). Estradiol and IGF-1 concentrations were not associated with COVID-19 severity in men. Testosterone, estradiol, and IGF-1 concentrations were similar in women with and without severe COVID-19. Gene set enrichment analysis revealed upregulated hormone signaling pathways in CD14+CD16- (ie, classical) monocytes and CD14-CD16+ (ie, nonclassical) monocytes in male patients with COVID-19 who needed intensive care unit treatment vs those who did not. Conclusions and Relevance: In this single-center cohort study of patients with COVID-19, lower testosterone concentrations during hospitalization were associated with increased disease severity and inflammation in men. Hormone signaling pathways in monocytes did not parallel serum hormone concentrations, and further investigation is required to understand their pathophysiologic association with COVID-19.


Subject(s)
COVID-19/blood , Hospitalization , Inflammation/etiology , Severity of Illness Index , Testosterone/blood , Aged , COVID-19/complications , COVID-19/pathology , Estradiol/blood , Female , Gonadal Steroid Hormones/blood , Hospitals , Humans , Inflammation/blood , Insulin-Like Growth Factor I/metabolism , Male , Middle Aged , Missouri , SARS-CoV-2 , Sex Factors
4.
Proc Natl Acad Sci U S A ; 117(50): 32105-32113, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-947594

ABSTRACT

Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-stimulated gene that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an IFN-stimulated gene screen against vesicular stomatitis virus (VSV)-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of SARS-CoV-2 replication. Internalized 25HC accumulates in the late endosomes and potentially restricts SARS-CoV-2 spike protein catalyzed membrane fusion via blockade of cholesterol export. Our results highlight one of the possible antiviral mechanisms of 25HC and provide the molecular basis for its therapeutic development.


Subject(s)
COVID-19 Drug Treatment , Endosomes/genetics , Hydroxycholesterols/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Endosomes/metabolism , Humans , Interferons/metabolism , Membrane Fusion/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/metabolism , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL